函数

调用函数

Python内置了很多有用的函数,我们可以直接调用。

要调用一个函数,需要知道函数的名称和参数,比如求绝对值的函数abs,只有一个参数。可以直接从Python的官方网站查看文档:
http://docs.python.org/3/library/functions.html#abs
也可以在交互式命令行通过help(abs)查看abs函数的帮助信息。

调用abs函数:

1
2
3
4
5
6
>>> abs(100)
100
>>> abs(-20)
20
>>> abs(12.34)
12.34

调用函数的时候,如果传入的参数数量不对,会报TypeError的错误,并且Python会明确地告诉你:abs()有且仅有1个参数,但给出了两个:

1
2
3
4
>>> abs(1,2)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: abs() takes exactly one argument (2 given)

如果传入的参数数量是对的,但参数类型不能被函数所接受,也会报TypeError的错误,并且给出错误信息:str是错误的参数类型:

1
2
3
4
>>> abs('a')
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: bad operand type for abs(): 'str'

而max函数max()可以接收任意多个参数,并返回最大的那个:

1
2
3
4
>>> max(1,2)
2
>>> max(2,3,1,-5)
3

数据类型转换

Python内置的常用函数还包括数据类型转换函数,比如int()函数可以把其他数据类型转换为整数:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
>>> int('123')
123
>>> int(12.34)
12
>>> float('12.34')
12.34
>>> str(1.23)
'1.23'
>>> str(100)
'100'
>>> bool(1)
True
>>> bool('')
False

函数名其实就是指向一个函数对象的引用,完全可以把函数名赋给一个变量,相当于给这个函数起了一个“别名”:

1
2
3
>>> a = abs # 变量a指向abs函数
>>> a(-1) # 所以也可以通过a调用abs函数
1

练习

请利用Python内置的hex()函数把一个整数转换成十六进制表示的字符串:

1
2
3
4
# -*- coding: utf-8 -*-
n1 = 255
n2 = 1000

答案:

1
2
3
4
5
6
>>> n1 = 255
>>> n2 = 1000
>>> hex(n1)
'0xff'
>>> hex(n2)
'0x3e8'

定义函数

在Python中,定义一个函数要使用def语句,依次写出函数名、括号、括号中的参数和冒号:,然后,在缩进块中编写函数体,函数的返回值用return语句返回。
我们以自定义一个求绝对值的my_abs函数为例:

1
2
3
4
5
6
7
8
9
10
>>> def my_abs(x):
... if x>= 0:
... return x
... else:
... return -x
...
>>> my_abs(10)
10
>>> my_abs(-100)
100

请注意,函数体内部的语句在执行时,一旦执行到return时,函数就执行完毕,并将结果返回。因此,函数内部通过条件判断和循环可以实现非常复杂的逻辑。
如果没有return语句,函数执行完毕后也会返回结果,只是结果为None。

return None可以简写为return。

如果你已经把my_abs()的函数定义保存为abstest.py文件了,那么,可以在该文件的当前目录下启动Python解释器,用from abstest import my_abs来导入my_abs()函数,注意abstest是文件名(不含.py扩展名)

空函数

如果想定义一个什么事也不做的空函数,可以用pass语句:

1
2
def nop():
pass

pass语句什么都不做,那有什么用?实际上pass可以用来作为占位符,比如现在还没想好怎么写函数的代码,就可以先放一个pass,让代码能运行起来。

pass还可以用在其他语句里,比如:

1
2
if age >= 18:
pass

缺少了pass,代码运行就会有语法错误。

参数检查

调用函数时,如果参数个数不对,Python解释器会自动检查出来,并抛出TypeError:

1
2
3
4
>>> my_abs(1,2)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: my_abs() takes 1 positional argument but 2 were given

但是如果参数类型不对,Python解释器就无法帮我们检查。试试my_abs和内置函数abs的差别:

1
2
3
4
5
6
7
8
9
>>> abs('a')
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: bad operand type for abs(): 'str'
>>> my_abs('a')
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<stdin>", line 2, in my_abs
TypeError: unorderable types: str() >= int()

让我们修改一下my_abs的定义,对参数类型做检查,只允许整数和浮点数类型的参数。数据类型检查可以用内置函数isinstance()实现:

1
2
3
4
5
6
7
8
9
10
11
12
13
>>> def my_abs(x):
... if not isinstance(x,(int,float)):
... raise TypeError('bad operand type')
... if x >= 0:
... return x
... else:
... return -x
...
>>> my_abs('a')
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<stdin>", line 3, in my_abs
TypeError: bad operand type

添加了参数检查后,如果传入错误的参数类型,函数就可以抛出一个错误

返回多个值

比如在游戏中经常需要从一个点移动到另一个点,给出坐标、位移和角度,就可以计算出新的新的坐标:

1
2
3
4
5
6
7
8
9
10
11
12
13
>>> import math
>>> def move(x,y,step,angle=0)
File "<stdin>", line 1
def move(x,y,step,angle=0)
^
SyntaxError: invalid syntax
>>> def move(x,y,step,angle=0):
... nx = x + step*math.cos(angle)
... ny = y - step*math.sin(angle)
... return nx,ny
...
>>> move(1,2,5)
(6.0, 2.0)

import math语句表示导入math包,并允许后续代码引用math包里的sin、cos等函数。

然后,我们就可以同时获得返回值:

1
2
3
>>> x, y = move(100, 100, 60, math.pi / 6)
>>> print(x, y)
151.96152422706632 70.0

但其实这只是一种假象,Python函数返回的仍然是单一值:

1
2
3
>>> r = move(100, 100, 60, math.pi / 6)
>>> print(r)
(151.96152422706632, 70.0)

原来返回值是一个tuple!但是,在语法上,返回一个tuple可以省略括号,而多个变量可以同时接收一个tuple,按位置赋给对应的值,所以,Python的函数返回多值其实就是返回一个tuple,但写起来更方便。

小结

定义函数时,需要确定函数名和参数个数;

如果有必要,可以先对参数的数据类型做检查;

函数体内部可以用return随时返回函数结果;

函数执行完毕也没有return语句时,自动return None。

函数可以同时返回多个值,但其实就是一个tuple。

练习

请定义一个函数quadratic(a, b, c),接收3个参数,返回一元二次方程:

ax2 + bx + c = 0

的两个解。

提示:计算平方根可以调用math.sqrt()函数:

暂时没答案。。

函数的参数

定义函数的时候,我们把参数的名字和位置确定下来,函数的接口定义就完成了。对于函数的调用者来说,只需要知道如何传递正确的参数,以及函数将返回什么样的值就够了,函数内部的复杂逻辑被封装起来,调用者无需了解。

Python的函数定义非常简单,但灵活度却非常大。除了正常定义的必选参数外,还可以使用默认参数、可变参数和关键字参数,使得函数定义出来的接口,不但能处理复杂的参数,还可以简化调用者的代码。

位置参数

我们先写x²的函数:
对于power(x)函数,参数x就是一个位置参数。

当我们调用power函数时,必须传入有且仅有的一个参数x:

1
2
3
4
5
6
7
def power(x):
return x * x
>>> power(5)
25
>>> power(15)
225

现在,如果我们要计算x3怎么办?可以再定义一个power3函数,但是如果要计算x4、x5……怎么办?我们不可能定义无限多个函数。

你也许想到了,可以把power(x)修改为power(x, n),用来计算xn,说干就干:

1
2
3
4
5
6
7
8
9
>>> def power(x,n):
... s = 1
... while n > 0:
... n = n - 1
... s = s * x
... return s
...
>>> power(5,3)
125

对于这个修改后的power(x, n)函数,可以计算任意n次方
修改后的power(x, n)函数有两个参数:x和n,这两个参数都是位置参数,调用函数时,传入的两个值按照位置顺序依次赋给参数x和n。

默认参数

新的power(x, n)函数定义没有问题,但是,旧的调用代码失败了,原因是我们增加了一个参数,导致旧的代码因为缺少一个参数而无法正常调用:

1
2
3
4
>>> power(5)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: power() missing 1 required positional argument: 'n'

Python的错误信息很明确:调用函数power()缺少了一个位置参数n。

这个时候,默认参数就排上用场了。由于我们经常计算x²,所以,完全可以把第二个参数n的默认值设定为2:

1
2
3
4
5
6
7
8
9
10
11
>>> def power(x,n=2):
... s = 1
... while n > 0:
... n = n -1
... s = s * x
... return s
...
>>> power(5)
25
>>> power(5,3)
125

这样,当我们调用power(5)时,相当于调用power(5, 2)
从上面的例子可以看出,默认参数可以简化函数的调用。设置默认参数时,有几点要注意:

一是必选参数在前,默认参数在后,否则Python的解释器会报错(思考一下为什么默认参数不能放在必选参数前面);

二是如何设置默认参数。

当函数有多个参数时,把变化大的参数放前面,变化小的参数放后面。变化小的参数就可以作为默认参数。

使用默认参数有什么好处?最大的好处是能降低调用函数的难度。

举个例子,我们写个一年级小学生注册的函数,需要传入name和gender两个参数:

1
2
3
4
5
6
7
>>> def enroll(name,gender):
... print('name:',name)
... print('gender:',gender)
...
>>> enroll('Sarah','F')
name: Sarah
gender: F

如果要继续传入年龄、城市等信息怎么办?这样会使得调用函数的复杂度大大增加。
我们可以把年龄和城市设为默认参数:

1
2
3
4
5
6
7
8
9
10
11
>>> def enroll(name,gender,age=6,city='Beijing'):
... print('name:',name)
... print('gender:',gender)
... print('age:',age)
... print('city:',city)
...
>>> enroll('Stephen','A')
name: Stephen
gender: A
age: 6
city: Beijing

这样,大多数学生注册时不需要提供年龄和城市,只提供必须的两个参数
只有与默认参数不符的学生才需要提供额外的信息:

1
2
3
4
5
6
7
8
9
10
>>> enroll('karl','B',6)
name: karl
gender: B
age: 6
city: Beijing
>>> enroll('Adam','D',10,'Tianjin')
name: Adam
gender: D
age: 10
city: Tianjin

可见,默认参数降低了函数调用的难度,而一旦需要更复杂的调用时,又可以传递更多的参数来实现。无论是简单调用还是复杂调用,函数只需要定义一个。
默认参数很有用,但使用不当,也会掉坑里。默认参数有个最大的坑,演示如下:
先定义一个函数,传入一个list,添加一个END再返回:

1
2
3
def add_end(L=[]):
L.append('END')
return L

当你正常调用时,结果似乎不错:

1
2
3
4
>>> add_end([1, 2, 3])
[1, 2, 3, 'END']
>>> add_end(['x', 'y', 'z'])
['x', 'y', 'z', 'END']

当你使用默认参数调用时,一开始结果也是对的:

1
2
>>> add_end()
['END']

但是,再次调用add_end()时,结果就不对了:

1
2
3
4
>>> add_end()
['END', 'END']
>>> add_end()
['END', 'END', 'END']

很多初学者很疑惑,默认参数是[],但是函数似乎每次都“记住了”上次添加了’END’后的list。
Python函数在定义的时候,默认参数L的值就被计算出来了,即[],因为默认参数L也是一个变量,它指向对象[],每次调用该函数,如果改变了L的内容,则下次调用时,默认参数的内容就变了,不再是函数定义时的[]了。

所以,定义默认参数要牢记一点:默认参数必须指向不变对象!

要修改上面的例子,我们可以用None这个不变对象来实现:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
>>> def add_end(L=None):
... if L is None:
... L = []
... L.append('END')
... return L
...
>>> add_end()
['END']
>>> add_end()
['END']
>>> add_end(['x','y','z'])
['x', 'y', 'z', 'END']
>>> add_end([1,2,3])
[1, 2, 3, 'END']

为什么要设计str、None这样的不变对象呢?因为不变对象一旦创建,对象内部的数据就不能修改,这样就减少了由于修改数据导致的错误。此外,由于对象不变,多任务环境下同时读取对象不需要加锁,同时读一点问题都没有。我们在编写程序时,如果可以设计一个不变对象,那就尽量设计成不变对象

可变参数

在Python函数中,还可以定义可变参数。顾名思义,可变参数就是传入的参数个数是可变的,可以是1个、2个到任意个,还可以是0个。

我们以数学题为例子,给定一组数字a,b,c……,请计算a² + b² + c² + ……。

要定义出这个函数,我们必须确定输入的参数。由于参数个数不确定,我们首先想到可以把a,b,c……作为一个list或tuple传进来,这样,函数可以定义如下:

1
2
3
4
5
6
7
8
9
10
>>> def calc(numbers):
... sum = 0
... for n in numbers:
... sum = sum + n*n
... return sum
...
>>> cal
calc( callable(
>>> calc([1,2,3])
14

但是调用的时候,需要先组装出一个list或tuple
如果利用可变参数,调用函数的方式可以简化成这样:

1
2
3
4
>>> calc(1, 2, 3)
14
>>> calc(1, 3, 5, 7)
84

所以,我们把函数的参数改为可变参数:

1
2
3
4
5
def calc(*numbers):
sum = 0
for n in numbers:
sum = sum + n * n
return sum

定义可变参数和定义一个list或tuple参数相比,仅仅在参数前面加了一个*号。在函数内部,参数numbers接收到的是一个tuple,因此,函数代码完全不变。但是,调用该函数时,可以传入任意个参数,包括0个参数:

1
2
3
4
>>> calc(1, 2)
5
>>> calc()
0

如果已经有一个list或者tuple,要调用一个可变参数怎么办?可以这样做:

1
2
3
>>> nums = [1, 2, 3]
>>> calc(nums[0], nums[1], nums[2])
14

这种写法当然是可行的,问题是太繁琐,所以Python允许你在list或tuple前面加一个*号,把list或tuple的元素变成可变参数传进去:

1
2
3
>>> nums = [1, 2, 3]
>>> calc(*nums)
14

*nums表示把nums这个list的所有元素作为可变参数传进去。这种写法相当有用,而且很常见。

关键字参数

可变参数允许你传入0个或任意个参数,这些可变参数在函数调用时自动组装为一个tuple。而关键字参数允许你传入0个或任意个含参数名的参数,这些关键字参数在函数内部自动组装为一个dict。请看示例:

1
2
def person(name, age, **kw):
print('name:', name, 'age:', age, 'other:', kw)

函数person除了必选参数name和age外,还接受关键字参数kw。在调用该函数时,可以只传入必选参数:

1
2
>>> person('Michael',23)
name: Michael age: 23 others: {}

也可以传入任意个数的关键字参数:

1
2
3
4
>>> person('Stephen',24,city='Guangzhou')
name: Stephen age: 24 others: {'city': 'Guangzhou'}
>>> person('Jason',25,gender='F',job='Engineer')
name: Jason age: 25 others: {'job': 'Engineer', 'gender': 'F'}

关键字参数有什么用?它可以扩展函数的功能。比如,在person函数里,我们保证能接收到name和age这两个参数,但是,如果调用者愿意提供更多的参数,我们也能收到。试想你正在做一个用户注册的功能,除了用户名和年龄是必填项外,其他都是可选项,利用关键字参数来定义这个函数就能满足注册的需求。

和可变参数类似,也可以先组装出一个dict,然后,把该dict转换为关键字参数传进去:

1
2
3
>>> extra = {'city':'Guangzhou','job':'Engineer'}
>>> person('Jack',24,city=extra['city'],job=extra['job'])
name: Jack age: 24 others: {'city': 'Guangzhou', 'job': 'Engineer'}

当然,上面复杂的调用可以用简化的写法:

1
2
>>> person('Stephen',24,**extra)
name: Stephen age: 24 others: {'city': 'Guangzhou', 'job': 'Engineer'}

extra表示把extra这个dict的所有key-value用关键字参数传入到函数的*kw参数,kw将获得一个dict,注意kw获得的dict是extra的一份拷贝,对kw的改动不会影响到函数外的extra。

命名关键字参数

对于关键字参数,函数的调用者可以传入任意不受限制的关键字参数。至于到底传入了哪些,就需要在函数内部通过kw检查。
仍以person()函数为例,我们希望检查是否有city和job参数:

1
2
3
4
5
6
7
8
9
>>> def person(name,age,**kw):
... if 'city' in kw:
... pass
... if 'job' in kw:
... pass
... print('name:',name,'age:',age,'other:',kw)
...
>>> person('Jack',24,city='Guangzhou',zipcode=123456)
name: Jack age: 24 other: {'zipcode': 123456, 'city': 'Guangzhou'}

但是调用者仍可以传入不受限制的关键字参数
如果要限制关键字参数的名字,就可以用命名关键字参数,例如,只接收city和job作为关键字参数。这种方式定义的函数如下:

1
2
>>> person('Jack',24,city='Guangzhou',job='Engineer')
name: Jack age: 24 city: Guangzhou job: Engineer

如果函数定义中已经有了一个可变参数,后面跟着的命名关键字参数就不再需要一个特殊分隔符*了:

1
2
def person(name, age, *args, city, job):
print(name, age, args, city, job)

命名关键字参数必须传入参数名,这和位置参数不同。如果没有传入参数名,调用将报错:

1
2
3
4
>>> person('Jack',24,'Beijing','Engineer')
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: person() missing 2 required keyword-only arguments: 'city' and 'job'

由于调用时缺少参数名city和job,Python解释器把这4个参数均视为位置参数,但person()函数仅接受2个位置参数。

命名关键字参数可以有缺省值,从而简化调用:

1
2
def person(name, age, *, city='Beijing', job):
print(name, age, city, job)

由于命名关键字参数city具有默认值,调用时,可不传入city参数:

1
2
>>> person('Jack', 24, job='Engineer')
Jack 24 Beijing Engineer

使用命名关键字参数时,要特别注意,如果没有可变参数,就必须加一个作为特殊分隔符。如果缺少,Python解释器将无法识别位置参数和命名关键字参数:

1
2
3
def person(name, age, city, job):
# 缺少 *,city和job被视为位置参数
pass

参数组合

在Python中定义函数,可以用必选参数、默认参数、可变参数、关键字参数和命名关键字参数,这5种参数都可以组合使用。但是请注意,参数定义的顺序必须是:必选参数、默认参数、可变参数、命名关键字参数和关键字参数。
比如定义一个函数,包含上述若干种参数:

1
2
3
4
5
6
>>> def f1(a,b,c=0,*args,**kw):
... print('a=',a,'b=',b,'c=',c,'args=',args,'kw=',kw)
...
>>> def f2(a,b,c=0,*,d,**kw):
... print('a=',a,'b=',b,'c=',c,'d=',d,'kw=',kw)
...

在函数调用的时候,Python解释器自动按照参数位置和参数名把对应的参数传进去。

1
2
3
4
5
6
7
8
9
10
>>> f1(1,2)
a= 1 b= 2 c= 0 args= () kw= {}
>>> f1(1,2,c=3)
a= 1 b= 2 c= 3 args= () kw= {}
>>> f1(1,2,3,'a','b')
a= 1 b= 2 c= 3 args= ('a', 'b') kw= {}
>>> f1(1,2,3,'a','b',x=100)
a= 1 b= 2 c= 3 args= ('a', 'b') kw= {'x': 100}
>>> f2(1,2,d=99,ext=None)
a= 1 b= 2 c= 0 d= 99 kw= {'ext': None}

最神奇的是通过一个tuple和dict,你也可以调用上述函数:

1
2
3
4
5
6
7
8
>>> args = (1, 2, 3, 4)
>>> kw = {'d': 99, 'x': '#'}
>>> f1(*args, **kw)
a = 1 b = 2 c = 3 args = (4,) kw = {'d': 99, 'x': '#'}
>>> args = (1, 2, 3)
>>> kw = {'d': 88, 'x': '#'}
>>> f2(*args, **kw)
a = 1 b = 2 c = 3 d = 88 kw = {'x': '#'}

所以,对于任意函数,都可以通过类似func(args, *kw)的形式调用它,无论它的参数是如何定义的。

小结

Python的函数具有非常灵活的参数形态,既可以实现简单的调用,又可以传入非常复杂的参数。

默认参数一定要用不可变对象,如果是可变对象,程序运行时会有逻辑错误!

要注意定义可变参数和关键字参数的语法:

*args是可变参数,args接收的是一个tuple;

**kw是关键字参数,kw接收的是一个dict。

以及调用函数时如何传入可变参数和关键字参数的语法:

可变参数既可以直接传入:func(1, 2, 3),又可以先组装list或tuple,再通过args传入:func((1, 2, 3));

关键字参数既可以直接传入:func(a=1, b=2),又可以先组装dict,再通过**kw传入:func(**{'a': 1, 'b': 2})。

使用args和*kw是Python的习惯写法,当然也可以用其他参数名,但最好使用习惯用法。

命名的关键字参数是为了限制调用者可以传入的参数名,同时可以提供默认值。

定义命名的关键字参数在没有可变参数的情况下不要忘了写分隔符*,否则定义的将是位置参数。

递归函数

在函数内部,可以调用其他函数。如果一个函数在内部调用自身本身,这个函数就是递归函数。
使用递归函数需要注意防止栈溢出。在计算机中,函数调用是通过栈(stack)这种数据结构实现的,每当进入一个函数调用,栈就会加一层栈帧,每当函数返回,栈就会减一层栈帧。由于栈的大小不是无限的,所以,递归调用的次数过多,会导致栈溢出。
解决递归调用栈溢出的方法是通过尾递归优化,事实上尾递归和循环的效果是一样的,所以,把循环看成是一种特殊的尾递归函数也是可以的。

小结

使用递归函数的优点是逻辑简单清晰,缺点是过深的调用会导致栈溢出。

针对尾递归优化的语言可以通过尾递归防止栈溢出。尾递归事实上和循环是等价的,没有循环语句的编程语言只能通过尾递归实现循环。

Python标准的解释器没有针对尾递归做优化,任何递归函数都存在栈溢出的问题

练习

汉诺塔的移动可以用递归函数非常简单地实现。

请编写move(n, a, b, c)函数,它接收参数n,表示3个柱子A、B、C中第1个柱子A的盘子数量,然后打印出把所有盘子从A借助B移动到C的方法,例如:

1
2
def move(n,a,b,c):
pass

1
2
3
4
5
6
7
8
9
# 期待输出:
# A --> C
# A --> B
# C --> B
# A --> C
# B --> A
# B --> C
# A --> C
move(3, 'A', 'B', 'C')

答案
pass。。